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In the present study, a framework for modeling two-phase evaporating flow is presented,
which employs an Eulerian–Lagrangian–Lagrangian approach. For the continuous phase, a
joint velocity-composition probability density function (PDF) method is used. Opposed to
other approaches, such PDF methods require no modeling for turbulent convection and
chemical source terms. For the dispersed phase, the PDF of velocity, diameter, temperature,
seen gas velocity and seen gas composition is calculated. This provides a unified formula-
tion, which allows to consistently address the different modeling issues associated with
such a system. Because of the high dimensionality, particle methods are employed to solve
the PDF transport equations. To further enhance computational efficiency, a local particle
time-stepping algorithm is implemented and a particle time-averaging technique is
employed to reduce statistical and bias errors. In comparison to previous studies, a signif-
icantly smaller number of droplet particles per grid cell can be employed for the computa-
tions, which rely on two-way coupling between the droplet and gas phases. The framework
was validated using established experimental data and a good overall agreement can be
observed.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Two-phase flow is a highly complex problem characterised by strong non-linear coupling, like gas turbulence influencing
droplet motion and evaporation, and vice versa. Combustion of the formed charge, i.e. mixture of vapourised droplets and air,
further complicates the problem. An accurate prediction of such a flow requires accurate description of both the continuous
and the dispersed phases. A vast literature is available on the various modeling approaches used to simulate such two-phase
flow systems. Loth [1] reviewed the numerical developments in this field and categorised them as Lagrangian–Lagrangian,
Eulerian–Eulerian and Eulerian–Lagrangian approaches, depending on the representation of the continuous and the dis-
persed phases, respectively. Rangel [2] used a Lagrangian–Lagrangian approach for the gas and dispersed phase momentum
equations, and an Eulerian scheme for the fuel-vapour continuity and energy equations. However, the work lacks in consis-
tently addressing the issues associated with the exchange of information between the Lagrangian and Eulerian flow descrip-
tions. In another work [3], an Eulerian–Eulerian approach was employed to simulate dense sprays, where the dispersed
phase is treated as a continuum embedded within the gas phase [3]. This helps to avoid the need to directly resolve the
particle–particle interactions.

In the present study, we restrict ourselves to the dilute spray regime, where the dispersed phase cannot be treated as a
continuum and the particle–particle interactions can be neglected. The Eulerian–Lagrangian approach [3–7] is quite popular
and has been successful for many spray combustion simulations. In such a method, the gas and the dispersed phases are
. All rights reserved.
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treated by an Eulerian (finite-volume) and a Lagrangian framework, respectively and Loth [1] argues that it is helpful to re-
duce coupling errors. However, a discussion on evaporating spray simulations is missing in his review.

Here, a new framework capable of simulating turbulent reactive evaporating sprays is presented. It is based on an
Eulerian–Lagrangian–Lagrangian approach; similar to the one presented by Naud [8]. For the mean gas phase flow, a
finite-volume (Eulerian) scheme is employed to solve the Reynolds averaged Navier–Stokes (RANS) equations and to obtain
the higher statistical moments, a particle method (Lagrangian) is used to solve the joint velocity–frequency-composition
probability density function (PDF) transport equation as presented by Jenny et al. [9]. They showed that such PDF solution
algorithms for turbulent reactive flows are computationally very efficient [9]. A particle method (Lagrangian) is also used for
the dispersed phase. It is shown how the two phases can be rigorously coupled and for the droplet dispersion a novel model
is presented. It is also demonstrated that the bias error and therefore the required number of particles can be drastically re-
duced by exponentially weighted moving time-averaging [9]. Moreover, a local time-stepping algorithm for the particles has
been implemented to enhance numerical efficiency [10]. To model the droplet evaporation, a model based on Sazhin et al.
[11] is employed. A brief validation study shows excellent agreement with the experimental microgravity data of Nomura
et al. [12]. For the validation of the whole framework, the well established experimental data of Sommerfeld et al. [13]
for evaporating iso-propyl alcohol droplets was employed.

2. Statistical description of the continuous phase

In this section, a statistical description of the continuous phase flow is presented. It is based on an Eulerian and a discrete
Lagrangian approach, where the state of the flow is described by a joint probability density function (PDF). For simplicity, in
this work no chemical reactions nor mixing are considered.

2.1. Mass density function

The one-point one-time statistics of the continuous phase flow is characterised by the mean gas density hqi, the Favre (or
mass) averaged velocity eU and by the mass weighted Eulerian PDF ~f ðv;W; x; tÞ of fluctuating velocity u ¼ U� eU and compo-
sition / at any location x, and time t [9,14,15]. Note that v and W are the sample space variables of u and /, respectively.
Transport of the mass density function (MDF) Fðv;W;x; tÞ ¼ hqiðx; tÞ~f ðv;W; x; tÞ is described by
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where the operators ~:, h�i and h�j�i denote Favre-averaged quantities, Reynolds-averaged quantities, and conditional expecta-
tions respectively. The first and second terms on the left-hand side (LHS) describe the temporal evolution and transport in
physical space. The third and fourth LHS-terms represent the evolution of F in the fluctuating velocity space due to the mean
velocity and Reynolds stress gradients. The last two LHS-terms describe the evolution of F in the composition space due to
chemical reactions and mean diffusion. Note that all LHS-terms appear in closed form. Those on the right-hand side (RHS),
however, are unclosed and require modeling. They account for the effects of the fluctuating pressure gradient term, the fluc-
tuating viscous term and the fluctuating diffusion term.

Since F is transported in 6þ Ns dimensions (Ns is the number of compositions), it generally is infeasible to solve Eq. (1)
with a finite-volume, a finite-difference or any other continuum method. Fortunately, the cost of stochastic Monte-Carlo
methods scales only linearly with the sample space dimension. In such methods, F is represented by a cloud of particles.
For each particle, a set of stochastic differential equations has to be solved to describe its evolution.

2.2. RANS formulation

Jenny and Pope [9] showed the relationship between the joint velocity-composition PDF equation and the Reynolds aver-
aged Navier–Stokes (RANS) equations. The RANS equations can directly be derived from Eq. (1) and if all viscous and diffusive
terms are neglected (which is justified for high Reynolds numbers away from walls), the system reads
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where Es is the total sensible energy, hs the sensible enthalpy and _Q the thermal energy source term due to chemical reac-
tions. Note that guiuj , guih

00
s , guiujuj and hq _Qi can be obtained from F . Therefore, opposed to moment closure methods, such a

PDF approach requires no modeling for turbulent convection and chemical source terms (arising due to chemical reactions).
In the present study we propose a framework for modeling two-phase reacting flow. The term hSI

mi in Eq. (2) is the mean
mass transfer source term arising due to droplet evaporation and the term hSI

Ui
i in Eq. (3) is the mean momentum source

term arising due to the droplet motion in the gas environment. hSI
Hi in Eq. (4) accounts for the energy consumed during drop-

let heating and evaporation, which for dilute sprays is much less than the energy released during combustion, i.e.
hq _Qi � hSI

Hi. Thus, hSI
Hi in Eq. (4) is neglected. Expressions for the expectations hSI

mi and hSI
Ui
i will be presented in Section

(3.4).

2.3. PDF closure models for the continuous phase

The relationship between the mass weighted PDF ~f and the MDF F is given as,
Table 1
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where the sample space was augmented by the coordinate H for the turbulent frequency x. According to Eq. (5), F can be
represented by a cloud of particles in which it expresses the local particle number density.

In the present study, we use the hybrid particle/finite-volume approach [9] to solve Eqs. (1)–(4). In this approach, Eq. (1)
is solved with a particle method, where closure models are employed for the RHS terms and eU is obtained from the solution
of the system ((2)–(4)), which is solved simultaneously with a FV scheme. Note that guiuj , guih

00
s , guiujuj and hq _Qi are obtained

from the particle solution of Eq. (1) and the mean pressure is given by the state equation
hpi ¼ hðc� 1ÞðqE� q
2

UiUiÞi; ð6Þ
where c is the ratio of specific heats. The specific heat constants of the gas are assumed to be constant. While a standard
upwind based second order, explicit FV scheme is employed to solve the RANS equations, the particle method used to com-
pute F is more involved and is explained in more detail here.

Each particle has a mass m�, a position X�, a fluctuating velocity u�, a turbulence frequency x� and a set of compositions
/�. Their evolution in physical space is described by the equation
dX� ¼ ðeUðX�Þ þ u�Þdt; ð7Þ
where the mean velocity eU is obtained from the RANS solution and interpolated to the particle positions. The evolution
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of the fluctuating particle velocity is approximated by the Simplified Langevin Model (SLM), i.e. as
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the conditional turbulence frequency. Typical values for the model constants C0 and CX are given in Table 1. The last term in
Eq. (9) is based on a Wiener process, where dWiðtÞ ¼Wiðt þ dtÞ �WiðtÞ is a Gaussian random variable with hdWii � 0 and
hdWidWji ¼ dtdij. To describe the evolution of the turbulence frequency x�, the model equation
dx�ðtÞ ¼ �C3ðx� � ~xÞXdt � SxXx�ðtÞdt þ ð2C3C4 ~xXx�ðtÞÞ1=2dW ð12Þ
with the source term
Sx ¼ Cx2 � Cx1
P

kX
ð13Þ
and the turbulence production
P ¼ �guiuj
@ ~Ui

@xj
ð14Þ
is employed. Again, typical values for the model constants C3, C4, Cx1 and Cx2 are specified in Table 1. Details regarding the
numerical solution of Eqs. (9), (11) and (12) can be found in [9].

3. Statistical description of the dispersed phase

Similar to the gas phase, in this section a statistical description of the dispersed phase flow is presented. In the present
study, all droplets are assumed to be spherical and have constant density throughout the flow.

3.1. Mass density function

To describe the statistics of the spray droplet distribution, here the mass density function
F pðVp; bDp;Wp;Vs;Ws;x; tÞ ¼ hRiðx; tÞ~f pðVp; bDp;Wp;Vs;Ws; x; tÞ

is considered. hRi is the average droplet mass density and ~f p the mass weighted PDF of the droplet velocity Up, the droplet
diameter Dp, the droplet composition Up, the ‘‘seen” gas velocity Us, and the ‘‘seen” gas composition Us at the location x and
time t. Note that Vp; bDp;Wp;Vs and Ws are the sample space variables of Up;Dp;Up;Us and Us, respectively. This mass density
function provides a unified formulation [8], which allows to consistently address the different modeling issues associated
with such a system. The droplet MDF transport equation without droplet coalescence or break-up reads
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where the operator h� j �ip denotes conditional expectations of droplet properties. In this paper, d/dt denotes the rate of
change of particle properties, while D=Dtð@=@t þ U � OÞ denotes the substantial derivative. If the particle velocity and U
are identical, then the meaning of the operators becomes the same. Note that the mass of a spherical droplet of diameter
Dp is mp ¼ 4

3 pD3
pqp.

3.2. Dispersed phase modeling

To solve Eq. (15), a stochastic particle approach similar to the one used for the gas phase turbulence is employed. The
dispersed phase is represented by a large set of particles with the individual properties W �; X�; U�p; D�p; U�p; U�s and U�s ,
which represent their weight, location in physical space, velocity, droplet diameter, droplet composition, ‘‘seen” gas velocity,
and ‘‘seen” gas composition. Note that such a computational particle represents n ¼ W�=mpðD�pÞ droplet particles.

The motion of the computational particles is governed by the velocity modeled as
dU�p;i
dt
¼ gi �

1
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where sp is the droplet relaxation time, i.e. 1=sp is the rate at which the particle velocity Up relaxes to the surrounding
(‘‘seen”) gas velocity Us.

The droplet Reynolds number is defined as
Rep ¼
qg jUs � UpjDp

lg
;
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where lg is the viscosity of the surrounding gas. In the Stokes regime ðRep ! 0Þ, the analytically determined particle relax-
ation time (for a sphere) is
sst
p ¼

qpD2
p

18lg
: ð17Þ
For higher Reynolds numbers, the solution
1
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with the Schiller–Naumann correlation [8,16]
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is employed. To model the fluctuating ‘‘seen” gas velocity u�s ¼ U�s � eUðXÞ� associated with a computational dispersed phase
particle, a similar model as for the gas phase particle velocities is used, i.e.
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The term (I) in Eq. (18) accounts for the difference between the trajectories of dispersed and gas phase particles. Since it de-
pends on the instantaneous gradient @us;i=@xj of the fluctuating seen gas velocity, modeling is required. Here, we present a
closure for term (I), which is based on the correlation length scale
Lcorr ¼
ffiffiffi
k
p

X
: ð19Þ
This lets us formulate the decorrelation model
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where the decorrelation frequency
a ¼
jeU þ u�s � U�pj

Lcorr
ð21Þ
depends on the magnitude of the velocity difference jeU þ u�s � U�pj and the correlation length Lcorr. In the implementation, the
last two terms in Eq. (20) are treated in a fractional step by changing u�s;i (computed without the last two terms in Eq. (20)) by
the amount
Du�
decorrelation

s ¼ ðe�aDt � 1Þ u�
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s þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2aDt
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where the random variable urandom
g is the fluctuating velocity of an arbitrary gas phase particle belonging to the same ensemble.

The effect of term (I) on u�s is weak, if the seen gas evolves with a similar velocity as the droplets ðaDt � 1Þ. Vice versa, if droplet
and seen gas velocities differ a lot ðaDt � 1Þ, u�s becomes an uncorrelated random variable fulfilling the local gas velocity sta-
tistics. Note that the decorrelation scheme preserves the variance of u�s , if ug has the same variance independent of us.

3.3. Evaporation sub-model and its validation

Here, an infinite thermal conductivity (ITC) model [17], where one assumes uniform temperature within a droplet, is con-
sidered. The heat balance equation for a droplet is given as
mpCpL
dTp

dt
¼ pDpNu kmðTg � TpÞ � _mpL; ð23Þ
where _mp is the droplet evaporation rate, CpL the specific heat capacity of the liquid droplets, km the thermal conductivity of
the gas film mixture, Tg the gas temperature, Tp the droplet temperature and L the latent heat of vapourisation. The D2-law
by Spalding [18] is used for the mass evaporation rate, which is given as
_mp ¼ pDpqm Dv Sh lnð1þ BMÞ; ð24Þ
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where Dv is the binary diffusivity. The Spalding mass transfer number is given as
Fig. 1.
calcula
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where the vapour mass fraction
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of the droplet is given by the Clausius–Clapeyron’s equation [4,8] with the droplet vapour mole fraction
Xm ¼ exp
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the droplet boiling point Tbp, the representative molecular weight Md of the droplet and that of the gas phase, Mg . To account
for the effect of the gas phase convection and the contribution of vapour concentration to the droplet heating process, mod-
ified Nusselt and Sherwood numbers are used. The expressions Nu, Sh, Sc and Pr [19] read
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respectively, where
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The Spalding heat transfer number [19] is defined as
BT ¼
CpLðTg � TsÞ

Leff
ð26Þ
with the specific heat capacity Cpg of the gas, the thermal conductivity kg , the power Q L spent on droplet heating and
Leff ¼ Lþ ðQL= _mpÞ.

For validation of the vaporisation submodel, comparisons of the simulation results with the experimental zero gravity
data by Nomura et al. [12] were performed. Therefore, suspended n-heptane droplets in a nitrogen atmosphere at
0.1 MPa at temperatures of 471 K, 555 K, 648 K and 741 K were considered. The initial n-heptane droplet radius was 0.3 mm.

Fig. 1 shows a comparison between the experimental data and the simulation results. One can observe a good agreement
for the radius evolution of the evaporating n-heptane droplets for the various temperatures. The aim of presenting Fig. 1 is to
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

Time (s)

(R
d/R

d0
)2

Experiment
Simulation

471 K
555 K

648 K
741 K

The square of the ratio of droplet radius to its initial radius ðRd=R2
d0Þ versus time as obtained by Nomura et al. [12] and the results obtained by

tions for evaporating n-heptane droplets at a pressure of 0.1 MPa and an initial gas temperatures of 471 K, 555 K, 648 K and 741 K.
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validate the implementation of the evaporation model. With the study presented in Fig. 1, identification of a reasonable sub-
model to describe evaporation of droplets within the new framework is intended.

3.4. Dispersed phase and continuous phase coupling

The expectations hSI
mi and hSI

Ui
i are the source terms appearing in the Eqs. (2) and (3), respectively. hSI

mi accounts for the
mass transfer between droplet and gas phases due to evaporation and hSI

Ui
i accounts for the influence of the droplets on the

mean gas phase momentum. hSI
mi and hSI

Ui
i are computed from the ensemble of computational droplet particles using the

expressions
ð27Þ
and
ð28Þ
Moreover, the mass change Dt
R R R

XhS
I
mðx; tÞidx in cell X during a time step of size Dt is consistently added to the gas par-

ticles in that cell proportional to their weights.
4. Validation

In the implementation of the new modeling framework for statistically stationary evaporating two-phase flows, a hybrid
particle/finite-volume algorithm as proposed by Jenny et al. [9] is used to compute the MDF of the continuous phase. The
Reynolds averaged Navier–Stokes (RANS) equations are solved to obtain the mean velocity field, where the Reynold stresses
plus mean energy source term are obtained from the particle solution. Therefore, the stochastic differential equations pre-
sented in Section 3 are solved.

The dispersed phase motion is consistently calculated by solving the additional MDF equation also presented in Section 3.
Therefore, as shown by Minier and Peirano [20], equivalent computational particles are evolved. A short outline of the frame-
work is shown in Fig. 2. This framework is capable of handling

� dispersed phase motion in the physical domain and evolution of its properties,
� dispersed phase particles of varying size,
� influence on mean mass and momentum of the continuous phase due to the evaporated dispersed phase, and
� influence on the momentum of the continuous phase due to dispersed phase momentum.

This framework has been used to predict the experimental results obtained by Sommerfeld and Qiu [13] for the evapo-
rating iso-propyl alcohol spray. A good overall agreement is observed.

Naud [8] used a framework similar as the one presented here to model the effect of evaporating sprays. The results are
encouraging, but the method lacks rigorous two-way coupling, i.e. the influence of the droplet motion on the gas velocity is
ignored. Chen and Pereira [5] used a Lagrangian stochastic separated-flow (SSF) model for spray calculation. However, they
did not account for the influence of the evaporated dispersed phase on the continuous phase momentum. Their model also
lacks the effect of seen gas pressure gradient on the dispersed phase motion, which has minor influence in most cases,
however.

4.1. Experimental configuration and the computational setup

For validation, the experiments performed by Sommerfeld et al. [13] are employed. This experiment has been widely used
to validate turbulent evaporating spray simulations [6–8]. A sketch of the experimental configuration [13] is presented in
Fig. 3.

For the single phase flow measurements, the air flow was seeded with small spherical glass beads approximately 3 lm in
diameter. For the two-phase flow measurements, iso-propyl alcohol liquid at ambient temperature was injected into the cyl-
inder having an inner diameter of 0.2 m and a length of 1.5 m. The liquid is injected through a nozzle of 0.02 m diameter
located at the center of the cylindrical configuration. A coflowing air stream at 100 �C enters the domain through an annulus
having an outer diameter of 64 mm. Detailed experimental measurements for both single- and two-phase flows are available
for the axial locations X = 3, 25, 50, 100, 200, 300 and 400 mm in the downstream direction. Comparisons between the exper-
imental data and the simulation results for single- and two-phase flows are discussed in Sections (4.2) and (4.3).

From the experimental measurements, it can be ascertained that the spray is approximately axisymmetric. For the com-
putations, we chose a domain ranging from 0 m to 0.6 m in the axial direction and from 0 m to 0.097 m in the radial
direction.



Fig. 3. Schematic representation of the experimental setup used by Sommerfeld et al. [13].

Fig. 2. Flow chart of the proposed framework.
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4.2. Results for the single phase flow

Previous studies [4,6–8] show that the drag term in Eq. (16) is dominant, thus signifying the importance of correct pre-
dictions of the single phase flow field. Therefore, in a first validation study single phase flow was considered [13].

For the computations, a 90	 50 grid was used, which has been refined near the nozzle to resolve the recirculation zone.
Moreover, an average of 30 computational gas particles per grid cell were employed. At the inlet, Dirichlet boundary condi-
tions based on the experimental flow profiles at the axial position X = 3 mm were applied and at the walls and at the sym-
metry axis, slip boundary conditions were employed.

Calculated mean and rms gas velocity components are shown in Figs. 4–7 together with the experimental data [13] and
the simulation results obtained by Naud [8]. Overall, a reasonable agreement can be observed. Part of the disagreement of
both the axial and radial rms velocity components near the nozzle region can be attributed to the fact that some of the re-
quired information at the inflow boundary is not available and had to be estimated. Similar observations were made by Naud
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Fig. 4. Mean axial gas velocity component. The continuous line, dashed line, and O represent the radial profiles obtained from the present simulation, Naud
[8] and experiment [13], respectively.
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Fig. 6. Rms of the axial gas velocity component. The continuous line, dashed line, and O represent the radial profiles obtained from the present simulation,
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[8] and experiment [13], respectively.
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[8] in his study. The improved gas flow profiles obtained by Naud [8] at section X = 25 mm in Figs. 4–7 might be due to the
choice of better inlet boundary conditions.

4.3. Results for the dispersed phase flow

For the dispersed phase flow, note that convection plays a major role in evaporation and dominates the process, if the
droplets spend a long time within the domain. Therefore, a correct prediction of droplet motion is crucial for a good evap-
oration rate prediction. On the other hand, the evaporation process affects the droplet motion as small-sized droplets tend to
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Fig. 8. Mean axial droplet velocity component. The continuous line, dashed line, and O represent the radial profiles obtained from the present simulation,
Naud [8] and experiment [13], respectively.
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Fig. 9. Mean radial droplet velocity component. The continuous line, dashed line, and O represent the radial profiles obtained from the present simulation,
Naud [8] and experiment [13], respectively.
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drift faster towards the instantaneous gas velocity [6]. Here, a grid with 100	 70 cells in the axial and radial directions,
which is refined near the nozzle region, was used for the computations. Again, an average of 30 computational gas particles
and 30 computational droplet particles per cell were employed. Note that these particle numbers are much smaller than
those used in previous studies, which is due to the hybrid FV/particle method [9,14], the employed time-averaging scheme
[9], and local particle time-stepping [10]. Computational cost analysis associated with the present study are presented later
in Section 4.4.4.

As in the single phase flow study, Dirichlet boundary conditions based on the flow profiles at section X = 3 mm were ap-
plied at the inlet and a droplet-size distribution consistent with the published experimental data [13] was imposed.

A quantitative comparison of the simulation results with the experimental data [13] and the simulation results of Naud
[8] is shown in the Figs. 8–13. The overall agreement is reasonable. Figs. 8 and 9 show the mean radial droplet velocity pro-
files at the axial locations X = 25, 50, 200, 300 and 400 mm. A reasonable agreement of the mean axial velocity component
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Fig. 10. Mean of the axial droplet velocity component. The continuous line and dash-dot line represent the radial profiles obtained from the present
simulation with and without the influence of droplets on the mean gas momentum, respectively.
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with the experimental data can be observed, but along the centreline, near the valve region, it is underpredicted. Again, this
deviation can be attributed to the lack of sufficient experimental inflow data, which is a known concern in spray simulations.
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Fig. 12. Rms of the radial droplet velocity component. The continuous line, dashed line, and O show represent the radial profiles obtained from the present
simulation, Naud [8] and experiment [13], respectively.

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

x 10−5 Axial Pos.: 25 mm

r (in m)

D
ro

p 
m

ea
n−

/rm
s−

 D
ia

.

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

x 10−5 Axial Pos.: 50 mm

r (in m)

D
ro

p 
m

ea
n−

/rm
s−

 D
ia

.

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

x 10−5 Axial Pos.: 100 mm

r (in m)

D
ro

p 
m

ea
n−

/rm
s−

 D
ia

.

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

x 10−5 Axial Pos.: 200 mm

r (in m)

D
ro

p 
m

ea
n−

/rm
s−

 D
ia

.

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

x 10−5 Axial Pos.: 300 mm

r (in m)

D
ro

p 
m

ea
n−

/rm
s−

 D
ia

.

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

x 10−5 Axial Pos.: 400 mm

r (in m)

D
ro

p 
m

ea
n−

/rm
s−

 D
ia

.

mean dia. (exp.) mean dia. (Naud) rms dia. (Naud) rms dia. (exp.) mean dia. (sim.) rms dia. (sim.)

Fig. 13. Mean and rms droplet diameters. The continuous line, dashed line and O s how the mean radial profiles obtained from the present simulation, Naud
[8] and experiment [13] respectively. The symboled-continuous line, dash-dot line and the symbol ‘+’ represent the droplet rms radial profiles obtained
from the present simulation, Naud [8] and experiment [13], respectively.



Table 2
Test locations in the domain.

Location Distance in x-direction (m) Distance in y-direction (m)

1 0.1 0.06
2 0.2 0.04
3 0.4 0.02
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Fig. 14. Convergence histories: Logrithm of the residuals in the finite-volume code for 70	 50 grid with Npc ranging from 10 to 80 particles per grid cell
each of gas and droplet phase against time steps.
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Fig. 15. Radial profiles of mean axial droplet velocity (top left), rms axial droplet velocity (top right), mean droplet diameter (bottom left) and rms radial
droplet velocity (bottom right) at axial location X = 0.2 m computed on 70	 50 grid with Npc ranging from 10 to 80 particles per grid cell each of gas and
droplet phase.

2076 G. Anand, P. Jenny / Journal of Computational Physics 228 (2009) 2063–2081



0 0.02 0.04 0.06 0.08 0.1 0.120

2

4

6

8

10

12

1/Npc

<D
ro

p 
U

>

Location 1
Location 2
Location 3

0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

1/Npc

D
ro

p 
u rm

s

Location 1
Location 2
Location 3

0 0.02 0.04 0.06 0.08 0.1 0.120

0.5

1

1.5

2

1/Npc

D
ro

p 
v rm

s

Location 1
Location 2
Location 3

0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

6
x 10−5

1/Npc

<D
ro

p 
D

ia
m

et
er

>

Location 1
Location 2
Location 3

Fig. 16. Bias convergence studies: Droplet properties against N�1
pc at different locations (Table 2) showing the bias error for K = 10,000.
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Due to the presence of the droplets, the mean gas momentum is modified which in turn modifies the droplet momentum
through the drag term. Naud [8] did not consider the influence of droplets on the mean gas momentum. However, from
Fig. 10 it is ascertained that ignoring the influence of the droplets on the mean gas momentum produces no significant alter-
ation in the prediction of the mean velocity profiles in the present case study. Thus confirming the validation of Naud’s
assumption [8].

Figs. 11 and 12 shows the radial rms droplet velocity profiles and it can be observed that the present calculations are in
very good agreement with the experimental data [13]. A significant improvement (both qualitative and quantitative) in pre-
diction of rms radial droplet velocity over the results obtained by Naud [8] is observed.

Finally, Fig. 13 shows the mean and rms droplet diameters obtained from the present simulation together with the exper-
imental data [13] and the results by Naud [8]. Again, a good quantitative agreement with the experimental data can be
observed.

4.4. Convergence study

In this section, results obtained from numerical experiments are used to study the bias and spatial discretization errors.
For convenience, locations 1–3 as defined in Table 2 are chosen to quantify bias and spatial discretization errors.

4.4.1. Stationary solution
The hybrid algorithm for the two-phase flow is designed to handle statistically stationary flows. Fig. 14 shows the decay

of the residual (2-norm of energy change per finite-volume time step) as a function of time steps for varying numbers of both
gas and droplet particles per cell ðNpcÞ ranging from 10 to 80. Calculations are performed on a 70	 50 grid with a time-aver-
aging factor K of 10000. It can be observed that the residuals gradually decrease.

4.4.2. Bias error
Bias error is a deterministic error occurring due to usage of a finite number of particles. In the present section, the aim is

to study the influence of different values of time-averaging factors K and varying numbers of both gas and droplet particles
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Fig. 17. Bias convergence studies: Droplet properties against inverse of time-averaging factor K at different locations (Table 2) showing the bias error for
Npc ¼ 20.
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per cell. For this purpose, calculations were performed on a grid with 70	 50 cells. For a given number of both gas and
droplet particles per cell (Npc ¼ 20, i.e. 20 gas and 20 droplet particles per cell), calculations are performed for different val-
ues of time-averaging factors. Similarly, for K = 10,000, numerical experiments are performed for varying numbers of both
gas and droplet particles per cell ranging from 10 to 80. Fig. 15 shows the radial profiles of various droplet properties at
X = 0.2 m for varying numbers of both gas and droplet particles per cell for K = 10000. The small variations between the radial
profiles imply that the bias error is small.

To quantify the bias error, mean axial droplet velocity, rms axial droplet velocity, mean droplet diameter and rms radial
droplet velocity obtained from calculations at various locations (Table 2) are plotted against N�1

pc in Fig. 16. Symbols are the
numerical data and solid lines are the linear least-square fits obtained from the numerical data. The slopes of these lines indi-
cate the magnitude of the bias error. In Fig. 16, it can be noticed that the slopes are small thus indicating very small bias
error.

Fig. 17 shows the plots of various droplet properties against K�1 at various locations (Table 2) for a given number of both
gas and droplet particles Npc ¼ 20. Symbols represent the numerical data, solid lines are the linear least-square fits obtained
from the numerical data and again their slopes indicate the magnitude of bias error. From the plots it can be ascertained that
the bias error is very small for the mean axial droplet velocity and mean droplet diameter. For rms droplet velocities, the bias
error gets larger for time-averaging factors K 6 2500. Thus, it can be safely concluded that time-averaging with K > 5000
and Npc ¼ 20 leads to results, which are essentially free of any bias error.

4.4.3. Spatial discretization error
Spatial discretization errors are deterministic errors occurring due to the usage of finite number of grid cells. To quantify

the spatial discretization error, calculations were performed on 40	 30;70	 50;100	 70 and 130	 90 grids for K = 10,000
and Npc ¼ 20 (20 gas and 20 droplet particles per cell). The same droplet statistics at the locations of Table 2 was considered
as for the bias error studies. Fig. 18 shows the plots of mean axial droplet velocity, rms axial droplet velocity, mean droplet
diameter and rms radial droplet velocity against M�1

x M�1
y . Symbols represent the numerical results and solid lines are the

linear least-square fits to the numerical data. From the figure, it can be deduced that the spatial discretization is worse
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Fig. 18. Grid convergence studies: Droplet properties against M�1
x M�1

y at different locations (Table 2) showing the bias error for Npc ¼ 20.

Table 3
Simulations for computational cost assessment; MxMy ¼ 70	 50, number of timesteps Ntimesteps ¼ 100.

Simulation Npc TCPU (s) nconv (approx.)

A 20 50.16 300,000
B 40 97.06 300,000
C 80 188.37 300,000

Table 4
Coefficients determined from simulations A, B and C.

DNpc DTCPU cparticle coverhead

NB
pc � NA

pc ¼ 20 TB
CPU � TA

CPU ¼ 46:9 s 3:3499	 10�6 s 9:3147	 10�6 s

NC
pc � NB

pc ¼ 40 TC
CPU � TB

CPU ¼ 91:31 s 3:2611	 10�6 s 7:8570	 10�6 s

NC
pc � NA

pc ¼ 60 TC
CPU � TA

CPU ¼ 138:21 s 3:2907	 10�6 s 1:1685	 10�5 s
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for the rms than for the mean droplet quantities. However for both axial and radial rms droplet velocity components, a grid
which is finer than 70	 50 ðM�1

x M�1
y ¼ 2:85	 10�4Þ is required to significantly reduce the spatial discretization error at

these locations.

4.4.4. Computational cost
The computational cost [21] associated with such a particle PDF solution algorithm can be expressed as
Ttotal 
 nconvMxMyðcparticleð2 NpcÞ þ coverheadÞ; ð29Þ
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where Ttotal is the total CPU time, cparticle the CPU time per particle per time step, coverhead the CPU time per time step for non-
particle computations, Mx the number of cells in x-direction, My the number of cells in y-direction, 2 Npc the number of both
gas and droplet particles per cell and nconv the number of time steps required to reach a statistically stationary solution.

In the present study, computational cost analysis was performed on a 70	 50 grid. The CPU times TA
CPU ; T

B
CPU and TC

CPU per
100 time steps were measured for Npc ¼ 29;Npc ¼ 40 and Npc ¼ 80, respectively. Table 3 shows TCPU and nconv measured for
the simulations A, B and C. The parameters cparticle and coverhead are given as
cparticle ¼
DTCPU

Ntimesteps Mx My ð2DNpcÞ
ð30Þ
and
coverhead ¼
Ttotal

Ntimesteps Mx My
� cparticleð2 NpcÞ; ð31Þ
where Ntimesteps ¼ 100 is the number of time steps considered. DTCPU the difference between the measured CPU times for dif-
ferent numbers of particles per cell and 2 DNpc the difference in the number of particles per cell. Table 4 shows the coeffi-
cients determined from simulations A, B and C. Computations were performed on a 2.2 GHz Intel machine. From the table, it
can be ascertained that there is very small variation in the computational cost per particle per cell for the cases considered.
Thus, it can be concluded that the computational cost increases linearly with increasing number of particles per cell, i.e. the
usage of significantly fewer particles leads to significant computational savings.

5. Conclusions

The aim of the present study was to devise a framework for spray combustion modeling, where the influence of the droplet
motion on the mean gas momentum is significant. Therefore, a unified PDF modeling framework and a new hybrid solution
algorithm to simulate turbulent evaporating sprays was developed. Two-way coupling between the droplet and gas phases is
implemented and an infinite thermal conductivity (ITC) evaporation sub-model is used. Opposed to previous approaches, the
decorrelation between droplet and seen gas velocities is formulated based on individual separation and correlation length
scales. To enhance the computational efficiency, a local particle time-stepping algorithm [10] was implemented and a particle
time-averaging technique [9] is employed to reduce statistical and bias errors. This enables the use of much fewer computa-
tional gas and droplet particles per grid cell in comparison to previous studies [5,8].

The PDF algorithm was validated with the experimental data of a turbulent evaporating iso-propyl alcohol spray [13].
Overall, reasonable agreement can be observed.
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